Manganese blocks intracellular trafficking of Shiga toxin and protects against Shiga toxicosis.
نویسندگان
چکیده
Infections with Shiga toxin (STx)-producing bacteria cause more than a million deaths each year and have no definitive treatment. To exert its cytotoxic effect, STx invades cells through retrograde membrane trafficking, escaping the lysosomal degradative pathway. We found that the widely available metal manganese (Mn(2+)) blocked endosome-to-Golgi trafficking of STx and caused its degradation in lysosomes. Mn(2+) targeted the cycling Golgi protein GPP130, which STx bound in control cells during sorting into Golgi-directed endosomal tubules that bypass lysosomes. In tissue culture cells, treatment with Mn(2+) yielded a protection factor of 3800 against STx-induced cell death. Furthermore, mice injected with nontoxic doses of Mn(2+) were completely resistant to a lethal STx challenge. Thus, Mn(2+) may represent a low-cost therapeutic agent for the treatment of STx infections.
منابع مشابه
Manganese induces oligomerization to promote down-regulation of the intracellular trafficking receptor used by Shiga toxin
Manganese (Mn) protects cells against lethal doses of purified Shiga toxin by causing the degradation of the cycling transmembrane protein GPP130, which the toxin uses as a trafficking receptor. Mn-induced GPP130 down-regulation, in addition to being a potential therapeutic approach against Shiga toxicosis, is a model for the study of metal-regulated protein sorting. Significantly, however, the...
متن کاملShiga toxin–binding site for host cell receptor GPP130 reveals unexpected divergence in toxin-trafficking mechanisms
Shiga toxicosis is caused by retrograde trafficking of one of three types of Shiga toxin (STx), STx, STx1, or STx2. Trafficking depends on the toxin B subunits, which for STx and STx1 are identical and bind GPP130, a manganese (Mn)-sensitive intracellular trafficking receptor. Elevated Mn down-regulates GPP130, rendering STx/STx1 harmless. Its effectiveness against STx2, however, which is a ser...
متن کاملIonic requirements for entry of Shiga toxin from Shigella dysenteriae 1 into cells.
The ionic requirements for entry of Shiga toxin into cells were examined by measuring inhibition of protein synthesis after short-term incubations with toxin. The sensitivity of Vero cells and HeLa cells to Shiga toxin was strongly dependent on the divalent cation present. Vero cells were most sensitive in the presence of CaCl2 and SrCl2, whereas HeLa cells were equally sensitive in the presenc...
متن کاملThe epithelial cell cytoskeleton and intracellular trafficking. I. Shiga toxin B-subunit system: retrograde transport, intracellular vectorization, and more.
Many intracellular transport routes are still little explored. This is particularly true for retrograde transport between the plasma membrane and the endoplasmic reticulum. Shiga toxin B subunit has become a powerful tool to study this pathway, and recent advances on the molecular mechanisms of transport in the retrograde route and on its physiological function(s) are summarized. Furthermore, i...
متن کاملShiga Toxins: Intracellular Trafficking to the ER Leading to Activation of Host Cell Stress Responses
Despite efforts to improve hygenic conditions and regulate food and drinking water safety, the enteric pathogens, Shiga toxin-producing Escherichia coli (STEC) and Shigella dysenteriae serotype 1 remain major public health concerns due to widespread outbreaks and the severity of extra-intestinal diseases they cause, including acute renal failure and central nervous system complications. Shiga t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 335 6066 شماره
صفحات -
تاریخ انتشار 2012